Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling

نویسندگان

  • Johanna Jalonen
  • Juha Järvelä
  • Matti Vaaja
  • Matti Kurkela
  • Hannu Hyyppä
  • Yong Wang
چکیده

Detailed modeling of floodplain flows and associated processes requires data on mixed, heterogeneous vegetation at river reach scale, though the collection of vegetation data is typically limited in resolution or lack spatial information. This study investigates physically-based characterization of mixed floodplain vegetation by means of terrestrial laser scanning (TLS). The work aimed at developing an approach for deriving the characteristic reference areas of herbaceous and foliated woody vegetation, and estimating the vertical distribution of woody vegetation. Detailed experimental data on vegetation properties were gathered both in a floodplain site for herbaceous vegetation, and under laboratory conditions for 2–3 m tall trees. The total plant area (Atot) of woody vegetation correlated linearly with the TLS-based voxel count, whereas the Atot of herbaceous vegetation showed a linear correlation with TLS-based vegetation mean height. For woody vegetation, 1 cm voxel size was found suitable for estimating both the Atot and its vertical distribution. A new concept was proposed for deriving Atot for larger areas from the point cloud attributes of small sub-areas. The results indicated that the relationships between the TLS attributes and Atot of the sub-areas can be derived either by mm resolution TLS or by manual vegetation sampling. OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floodplain Roughness Mapping Synergy: Lidar and Spectral Remote Sensing

Floodplain roughness parameterization is one of the key elements of hydrodynamic modeling of river flow, which is directly linked to safety level estimation of lowland fluvial areas. Necessary input parameters are median grain size for unvegetated areas, vegetation density for forest and vegetation height and density for herbaceous vegetation. This paper presents a method for spatially distribu...

متن کامل

Extracting Structural Characteristics of Dormant Herbaceous Floodplain Vegetation from Airborne Laser Scanner Data

To map spatial patterns of floodplain vegetation structure for hydrodynamic modelling, airborne laser scanning is a promising tool. In a test for the lower Rhine floodplain, vegetation height and density of herbaceous vegetation were measured in the field at 42 georeferenced plots of 200 m each. Simultaneously, three airborne laser scanning (ALS) surveys were carried out in the same areas resul...

متن کامل

Differences in Cottonwood Growth Between a Losing and a Gaining Reach of an Alluvial Floodplain

Interstitial flow of river (hyporheic) water influences algal productivity, benthic assemblages, and locations of fish spawning. However, little is known of the effects of hyporheic flow on the growth of riparian vegetation. By increasing water availability and nutrient delivery, regional upwelling of hyporheic water may increase the growth of terrestrial vegetation. We tested and accepted the ...

متن کامل

Determining leaf area index and leafy tree roughness using terrestrial laser scanning

[1] Vegetation roughness, and more specifically forest roughness, is a necessary component in better defining flood dynamics both in the sense of changes in river catchment characteristics and the dynamics of forest changes and management. Extracting roughness parameters from riparian forests can be a complicated process involving different components for different required scales and flow dept...

متن کامل

Airborne LiDAR and Terrestrial Laser Scanning Derived Vegetation Obstruction Factors for Visibility Models

Research presented here explores the feasibility of leveraging vegetation data derived from airborne light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) for visibility modeling. Using LiDAR and TLS datasets of a lodgepole pine (Pinus contorta) dominant ecosystem, tree canopy and trunk obstructions were isolated relevant to a discrete visibility beam in a short-range line-of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015